Some problems may be more efficiently solved if a Llarge SIMD
machine can be partitioned into smaller groups of varying sizes of
powers of two. The interconnection network must be able to support this
partitioned machine. The partitioning properties of the four types of
networks are presented.

In the selection of an interconnection network for a computer ﬁ
design, the types of algorithms that must be executed should be con-
sidered. A detailed analysis of various networks is presented for three

parallel image processing algorithms: smoothing, histogram formation,

| and data classification.

i The Augmented Data Manipulator (ADM) network is introduced. An

{ analysis 1is presented which compares the capabilities of the ADM with

those of a multistage Cube network and with the Inverse Augmented Data {
Manipulator network.
The Emulator System, a proposed hardware design aid, is introduced.

The flexibility and power of this system is demonstrated by its ability

to simulate many types of interconnection networks and control schemes

that have appeared in the literature.

As the costs of microprocessors continue to decrease, more Large
I scale multiprocessor systems are being proposed and built. This thesis
will aid system architects in designing a partitionable interconnection

network appropriate for their particular needs.

NPT VO NI 2 W PRI AT FOS e

I. INTRODUCTION

Two basic factors influence the speed of operation of a computer
system. First 1is the speed of the logic circuits. Future technology
promises to bring this into the picosecond delay range, but theoretical
Limitations, such as the speed of Light, mean that other methods should
be used-to increase computational speed. The second factor, then, is
the organization of the machine and the algorithms which it performs.

Inexpensive microprocessors have made large scale parallel process-
ing systems feasible. Such architectures can be used for problems that
can be broken into independent subtasks, which can be done simultane-
ously, thus 1increasing computational speed. Examples of problems that
benefit from parallel processing systems are weather forecasting, image
processing, and air traffic control.

One type of parallel architecture is an SIMD (single instruction
stream - multiple data stream) system. The main components of this type

of system are

(1) N processing elements which operate in parallel, all executing the
same instruction at the same time,

(2) one control unit (CU), which sends instructions and other control

information to the processing elements, and

|
|

(3) an interconnaction network, which allows the processing elements to

communicate among themselves.

Many questions remain unanswered about the design and use of inter-
connection networks. This research formulates design criteria and
analysis techniques for interconnection networks with emphasis pltaced on

a class of multiprocessor systems which we call partitionable parallel

processing systems. A partitionable parallel processing system 1is a

reconfigurable parallel computer which can be configured not only as one
SIMD machine with N processing elements, but also as many smaller SIMD
machines. If T tasks each require at most N/T processing elements, then
this multiple SIMD mode more fully utilizes the system.

Chapter II introduces the terminology of parallel systems and
interconnection networks which will be used throughout this research. A
survey of the background Literature in the field of interconnection net-
works is presented in Chapter III. Some of the networks which are dis-
cussed and analyzed in this work are introduced in Chapter 11I.

Chapter 1V considers various aspects of the structure of networks
and the circuits used to build them. Single stage networks and multi-
stage networks of combinational logic are designed. By inserting regis-
ters after stages of a multistage network, blocks of data can be pipe-
Lined through the network to improve the effective throughput of the
data transfer. The effects of pipelining on the cost and data transfer
time of the network are analyzed. Comparisons are made between pipe-
Llined and unpipelined (combinational logic) multistage networks.

The partitioning of an 1interconnection network into independent

subnetworks 1is discussed in Chapter V. This allows a single set of

"

e

processors to act as many independent SIMD machines. The partitioning
; properties of single stage, multistage, and pipelined networks are
analyzed. The capabilities and restrictions imposed by partitioning are
investigated.

In Chapter VI, an enhanced network, the Augmented Data Manipulator,

is analyzed. The Augmented Data Manipulator is a highly flexible multi-

e i e WSS

stage network. 1Its capabilities are compared with other networks, and
some group theoretic properties of the way in which it passes data are
presented.

Image processing tasks can efficiently wutilize parallel computer

systems. Chapter VII presents three parallel image processing algo-

rithms, a smoothing algorithm, a histogram formation algorithm, and a

data classification algorithm. For each, the results of Chapter IV and

V are used to analyze the effect of the interconnection network of the

oo iy

parallel system upon the performance of the algorithm.

Little is known about the interaction of interconnection networks
and parallel algorithms. An effective system design aid would be one
which simulates the effects of a proposed interconnection network. Such

a tool, the emulator system, is introduced in Chapter VIII. Consisting

of a set of processing elements which interface to a powerful set of
interconnections among the processing elements, the emulator system can

simulate a wide variety of existing and proposed interconnection net-

L Bl B SR F o it i« AR e B AT

works. The processing elements offer computation capability to test
schemes to control an interconnection network.

In this research, the interconnection networks presented in

E o i s

Chapters 1II and III are studied. The various analysis techniques which

2 e

I B S AN i< P

are used for this work can be generalized and applied to other intercon-

nection networks. Thus, the significance of this work Llies not only in

the specific results, but also in the methods used to obtain them.

T T ——

II. DEFINITIONS

II.1. SIMD Computers

Typically, an SIMD machine (single instruction stream - multiple
data stream) T[FL661 consists of a control unit (CU), M processors, N
memories, and an interconnection network. The CU broadcasts
instructions to the N processors, and all active processors execute the
same instruction at the same time, but on different data streams.
Processors pass data among themselves through the interconnection

network. The model for an SIMD computer used here allows each processor

a private memory. This combination 1is referred to as a processing

element or PE. The interconnection network Links PEs, as shown in

Figure 1I.1, and this model is referred to as the PE-to-PE model. The
ILliac IV FBAR68] is configured in this fashion. Another model (Figure
11.2), the processor-to-memory model, uses the interconnection network
to move data from the processors to the memory and vice versa. The
processors and memories of the STARAN computer T8A751 are connected is
this manner. The PE-to-PE model can simulate the processor-to-memory
model and vice versa. If processor P(i) addresses memory M(j) in the

processor—-to-memory model, then in the PE-to-PE model, if PE(i) passes

an address to PE(j) and PE(j) passes the data from its memory back to

e

P e T e

g

T AT AT

o Rt R e W

3 6
’!
i |
|
| i
3 , CCNTROL UNIT
4 p . i
‘
|
i 1
; ‘ processor, processor, processorgf | ...| | processory_y
i
|
xremo:yo memoryl nemor y2 ces memor YN—l

INTERCONNECTION NETWORK

Figure II.1: A PE-to-PE model of an SIMD machine for N = 2"

AR e SR RER N s e P

FockiGranlls - AL ol e

CONTROL UNIT

L W
i e i e e ATt b U MR s bt s

processor processory processorp| ...| processory_;

| INTERCONNECTICN NETWCRK

n

| Figure II.2: A processor-to~memory model of an SIMD machine for N = 2 ',

i b daiaie e o G el e —
SR e

PE(i), the effect is the same.
Each PE is assigned a unique address from N to N-1, where N is a
power of two, that is, N = Zn, and n = log? N. The address in binary of
: - . SR
an arbitrary PE P is denoted by Pr-1Rn-2°*-R4Rq" When a specific qroup

of PEs is referenced, the group can be identified by specifying each bit

————— A S g S

of the n bit PE address as N, 1, or X, where X is a "don't care" state

(this is based on the "PE address mask' notation TSIE?5, SIE77a, SM781).

Superscripts are used as repetition factors. For example, the set of
; all odd numbered PEs is Xn-11, and the set of all even numbered PEs is
;i Xn-10. It is assumed that each PE knows its own address. Also, let Ei
E represent the complement of pi.

Each PE has special data transfer registers (DTRs) for passing data
to and receiving data from the network. PEs load data into DTRin
registers, and the data are moved by the interconnection network to the
DTRout registers, from which the PEs can access the data.

SIMD machines perform certain types of tasks, such as matrix
computations, faster than conventional single processor serial operation
computers. Consider the elementwise addition of two vectors, A and B,
both with N elements. Let the resultant sum, C, be stored as an N word
vector. Assume the SIMD machine has a PE-to-PE configuration, and that

A(i), B(i), and C(i) are stored in PE(i), N < i < N. To compute C, a

serial computer executes the code

for i = N until N=1 step +1 do
C(i) = A(i) + B(Y),
and uses N steps to complete the operation. The SIMD computer 1is a

parallel processor, and earns this name by processing all N elements of

|
|
!

¥ SO o

o8

N L i T

LG AU G ;s wo

I -

the vector addition in parallel. So, PE(i) performs C(i) = A(3i) + 8(i),
simultaneously for all i, N0 < i < N. The SIMD computer completes the
operation in one step consisting of reading A(i) and B(i) from memory,
adding the two, and writing the result into C(i).

In the example above, the SIMD machine completed the task faster
than the serial processor because the data were distributed amonq N PEs,
and no communication was needed among the PEs. For some tasks, PEs must
pass data among themselves, and it is the interconnection network which

supports this data movement.

The next example illustrates the function of the interconnection
network of the SIMD machine. Suppose that the vectors A, B, and C are
stored as in the previous example, and that each is N words Llong.

Consider the code

for i = 1 to N=1 step +1 do
C(i) = AGi=1) + B(3)
c(= B(N).
The SIMD computer performs this task in five steps.

(1) Before PE(i) can perform the addition, it must receive A(i-1) from
PE(i-1). So, first, PEs 0 through N-2 move data into DTRin
simultaneously,

(2) Next, the interconnection network is set to move data from PE(i-1)
to PE(i), for all i, 1 < i < N, simultaneously,

3 Then; PE(i) retrieves the data from DTRout, for all i, D < i < N,

simultaneously,

(4) The addition is done in PEs 1 through N-1 simultaneously.

(5) Lastly, PE(D) stores B(N) in C(N).

10

For comparison, the serial processor performs this task in N steps, each
of which is a read-add-write step or a read-write step.

These two examples show that, while the SIMD machine has about N
times the hardware of a serial processor, it does not always perform a
task N times faster. In the second example, the overhead introduced by
data transfer among PEs Limited the speedup of the task. A more

extensive tutorial on parallel processing is found in TKUC?771.

ol

|

I11.2. Interconnection Networks

The interconnection network may take many forms. A bus structure
(Figqure 1I.3) requires the lLeast hardware of any method. But, only one
PE at a time may use the bus, and so transfers that require all PEs to
move data are time consuming. At the opposite extreme, a crossbar
switch matrix (Figure IX.4) can connect any PE to any other PE and can
allow all PEs to transfer data simultaneously. Since a switch is
required at each switching node of the crossbar, O(Nz) gates are
required. Thus, the network 1is too expensive for use with a Large
number of processors. Benes NBE657 proposed the rearrangeable switching
network, which has the same capability as the crossbar but uses only
o(N Log2 N) gates. But the fastest algorithm to set up the network
requires time O(N logz N) TOPT711.

A practical interconnection network must compromise the speed of
the crossbar and the cost of the bus. This work will consider networks
that are lLess complex than the crossbar but faster than the bus.

An interconnection network can be described as a set of

interconnection functions, where each interconnection function is a

permutation (bijection) on the set of PE addresses FSIE7S, SIE77al. When
interconnection function f is apolied, PE(i), if active, passes its data
to PE(f(i)) for all i, 0 < i < N, simultaneously. To pass data from one
PE to another PE, a programmed sequence of interconnection functions
must be executed. An equivalent definition is that the interconnection
network takes the set of PE addresses as its input and produces as its
output a permutation of these PE addresses, i.e., it transforms (or

maps) input address I to output address 0. For example, suppose that

i g RO T

Ty

12

PE <@ PEC1> .. . EE(N-n‘

8US

Figure II.3: A bus structure for connecting N PEs.

-
e o S

o

13

PE ¢8> o e *

PEC1) A 4 9

PE (N-2> V - —b

PECN-1D ?7 - f

PE (B PEC1) PECN-2> PECN-1)

Figure II.4: A crossbar matrix switch for connecting N PEs.

14

PE(i) wishes to send data to PE(i+1). The resulting permutation is f(i)
= (i + 1) modulo N, where i is the address of the PE at the input of the
network, and f(i) is the address of the PE that receives data at the
output of the network. These two definitions will be wused
interchangeably.

Four interconnection networks are of particular interest here.

The Cube network consists of the n functions defined by

Cube (P _q==+PqPp) = P_qe++Pi4qPiPioq==+Pqr
for 0 < i < n SIE7S, SIE77al.

The Cube interconnection functions can be interpreted
geometrically. Let the PE addresses represent the vertices of an n
cube. For n = 3, the eight vertices of Figure II.5 are the the eight
PEs with addresses 000 through 111. Let the address at a vertex be P =
PoP4P}- The Cube network has the effect of connecting each vertex to
its n neighbors, that 1is, those PEs whose binary addresses differ in
only one bit position. In Figure I1.5, horizontal lines connect vertices
whose Llabels differ 1in bit Pne diagonal Llines connect vertices whose
Labels differ in bit Pys and vertical Llines connect vertices whose
Labels differ ir bit Pye For example, Cuben connects the following
pairs of processors: 000 and 101, 010 and N11, 100 and 101, and 110 and
111. That is, Cube0 “ =1, Cuben M =0, Cuben @) =3, Cubeq 3) =
2, Cube, (4) =5, Cube (7) = 6.

(5) = 4, Cube, (%) = 7, and Cube

n 0 9

Various types of cube networks have been explored. The multistage

n

network used in the STARAN 1is a hardware series of cube functions
TBA761. The SW Banyon with S = F =2 fGL73, GOK?76) is a cube type

network. The delta networks proposed in [PAT79) include the Cube

o o7 s el riemcms

118

111

183

218

181

211

Figure I1.5: For N =8,

viewed geometrically as

cube.

the Cube

281

interconnection functions can be

connecting the & vertices of a 3 dimensional

i e TN g
S s TR Lo SR il

Gl i

16

topology. The interconnection network for the CHOPP multiprocessor
system [SUB771 employs the cube interconnection functions. In FBA76,
BAU74, PEA77, SIE79b, SIE78b17, the usefulness of this type of network is
shown.

The Shuffle-Exchange network rST71] consists of two functions. The

Shuffle function is defined as

Shuffle(pn_1...p1pn) = Pp-2°*"P1PoPp-1"
The Exchange function is defined as
Exchange(pn_1pn_2...p1pn) = pn_1pn_2...p156.

The Shuffle function is analogous to shuffling a deck of cards, as
shown 1in Figure 1I.6a for N = 8., The top and bottom cards of the deck
remain stationary, i.e., Shuffle(?) = 0 and Shuffle(7) = 7. The
remaining cards are intermixed, one from the first half of the deck
followed by one from the second half of the deck. Figure 11.6b
illustrates the Exchange function for M = R, wWithout the Exchange
function, all permutations of input addresses to output addresses which
the Shuffle-Exchange network could form would require that PEs 0 and N-1
be mapped to themselves. Note that Exchange (P) = cUben P).

This network is the basis of Lawrie's omega network CLAW751. It is
also included in the networks of the RAP [CGY74] and Omen THIG721
systems. It has been shown to be useful in fGOL&1, LAN7S, LAST76,
SIE79b, SIE78b, ST711].

The Plus-Minus 31 (PM2I) network consists of the 2n functions

defined by

PM2,. () = j + 2" modulo N

j - 2" modulo N

PM2_. (§)

R

 ——
4 nC

7 =

y AR

Cad> SHUFFLE

L..

2

3

T
&

(b> EXCHANGE

Figure I1I.6: The Shuffle and Exchange functions for N = 8.

for 0 < j <N, 0 < i < n TSIE?5, SIE?7al. Throughout this discussion, if
(j - 2"y e N, then the convention will be that (i - 2") modulo N =

(N+ 3 -2") modulo N. For example, (N -2) moduto B = (8 + N - 2)

ety =gy R

interconnection function has the effect of adding or subtracting 1 in :

the ith bit position. Figure 11.7 shows the PM2*1 interconnections for

modulo 8 = 6 modulo 8. Note that P"I?.+

N = 8,
| Feng's multistage data manipulator TFE74] is a hardware series of
PM2I functions. The augmented data manipulator [SIS78] is a multistage
PM2I network with a very general control structure. The usefulness of

the PM2I network is discussed in FFE74, SIE79b, SIE78h, SIS7R1.

The Illiac network is the network used on the Illiac IV computer
[BAR68], The PEs are configured as a -/N X =/N array, and the
interconnection network has the effect of connecting each PE to its
north, south, east, and west neighbors, as shown in Figure II.8. The

four interconnection functions are

Illiac+1 (GD) (i + 1) modulo N (east)

E

|

Iltiac_y () = (i = 1) modulo N (west) q
i

Illiac, () = (i + m modulo M (south) i
Illiac_m (i) = (i = m modulo N (north)

where N = 2", and m 7 /N is an integer [FSIE?5, SIE77al. The Illiac

interconnection functions are a subset of the PM2I functions, where

Illiac+1 (i) = PHZ+n i, Itliac_1 (i) = PMZ_0 W\, Illiac+m () =

PM2+n/2.(i), and Illiac_m (i) = PMZ_n (i) .

/2

. e

19

i T

=< <
. T B - “; 1
| : -
| 2] >+ AR
e Ej o @
N = e
__;>1 4 < —
o b ol
< >
L“"55 ” | —— -
: <= e
f M2 4 PMZ_4

Figure II.7: The PM2+1 interconnection functions connect PE(i) to
PE(i+2 modulo N), and the PM2_. interconnection functions connect PE(i)

to PE(i~2 modulo N), 0 < i < N. Here, N = 8.

Y T ——

v

b

-

i

-
F-N
n

FrrS

—C><}<P*{>‘

Figure I1.8: For N = 16, the Illiac network connects PE(i) to PE(i+1

modulo 16), to PE(i-1 modulo 16), to PE(i+4 modulo 16), and to PE(i-4
modulo 16).

21

I1.3. Network Structures

A network can be constructed as either a recirculating or a

multistage network. A recirculating network is an interconnection

network with a single stage of switches. The stage is reused until data
reach their final destinations. A complete data transfer may take
several passes through the network. Figure II.9 illustrates this

arrangement. A multistage network 1is an dinterconnection network

composed of several, wusually log2 N, stages of combinational Llogic
switches. In general, a single pass through a multistage network is
sufficient to route data to their destinations. However, when a single
pass is insuff%cient, multiple passes may be used. Figure II.10
illustrates a multistage network.

For constructing multistage networks such as the STARAN and omega
networks, the dinterchange box is a useful building block TSIS78]1. The

interchange box is a two-input two-output device that, in the most

general case, may assume one of four legitimate states (Figure II.11).
Let the upper input and output Lines be lLabeled i and the lower input
and output Lines be Llabeled j. The four lLegitimate states are: (1)
straight - input i to output i, input j to output j; (2) exchange -

input i to output j, input j to output i; (3) lower broadcast - input j

to outputs i and j; (4) upper broadcast - input i to outputs i1 and j

CTLAW?75]. A two function interchange box is defined to be an interchange

box capable of either the straight or exchange states. A four function

interchange box is defined to be an interchange box capable of being in

any of the four legitimate states.

Recirculate

Data :>

DTR
From N :)A
—
PE (0) F ‘) BMUX R
Data l— -
To DT?.out e
PE(0) R
°
Y
Recirculate
Data —N pTR. -
From tn H“UX "
PE (N-1) 7 af B +
gy l B e
Yo out
PE(N-1)

Interconnection

Network

Figure 1I.9: A model for a recirculating network

for PE(i).

i 23

3

3,

i

E

3

' Data e]
: From i T 1 .§ . |
1 PE(0) o

; Data ¢ o

3 To ¢ DTROUt > §

i PE(0) ol

{ L4 3 g

i . £3

»! ® =

; Data — &

; From z DTRin ;R

1 PE(N-1) o

- Data >

3 . To C DTROUt ¥ -~

PE (N=1)

{

3

|

i

' Figure II.10: A model for a multistage interconnection network for PE(i).

4

|

W G sy

STRAIGHT INTERCHANGE
' .
A e A
[4
UPPER LOWER
BROADCAST BROADCAST
A, A) Ao

,\‘
~

Figure II1.11: The interchange box is a two-input two-output device that

can be in one of four Llegitimate states: straight, exchange, Lower

broadcast, or upper broadcast.

S g San

e

The control structure of a network is an 1important consideration.

For multistage networks, three types of controls are discussed in

rsis78]. Individual stage control allows one control signal for each

stage of the network. Individual box control uses a separate control

signal for each interchange box in the network, using hardware [PEA77]

or software (destination tags) TLAW757. Partial stage control uses more

than one but less than N/2 control signals at any stage of the network.
The typical control mechanism for a recirculating network assumes
that only an active PE can send and receive data. An inactive PE can
only receive data, because an interprocessor data transfer instruction
is executed only by active PEs. Here, a control is introduced that
differs from the usual SIMD control, where there is a single instruction
stream, and all active PEs must execute the same interconnection
function. By providing each PE with its own routing control register,

this restriction is removed. Independent function control allows each

PE to execute any set of the implemented interconnection functions. For
example, using a Cube network, PE(P) might send data to all PEs whose
addresses differ in one bit from P's address by executing all log2 N

Cube functions, Cuben, Cube1, etc. Also, different PEs may use

different functions, e. g., PE(0) may use Cuben while PE(1) uses Cube1.

et e L

26

II.4. PE Address Masks

In the normal execution of an SIMD program, all PEs will respond to

the instructions issued by the control unit. A masking scheme can be

provided which aliows the user to select a subset of PEs to respond to
the instructions. To select which PEs are active, an n position PE
address mask may accompany an instruction [SIE?5, SIE77al. Recall the
address specification notation of section 11.1. Each position of the
mask can be 0, 1, or X (don't care). For a given mask, the PEs whose
addresses match the mask are active. For example, if N=8 and the mask
specified is
MASK r01X1]
then the active PEs are 010 and 011, and only these two respond to the

instruction which. follows the MASK command.

A negative gg:address mask is the same as a regular PE address
mask, except that it activates all those processors which do not match
the mask CSM781. This type of mask can activate sets of processors that
a single regular mask cannot. A negative PE address mask is prefixed by
a '-'. Superscripts are used as repétition factors when describing
masks. For example for N = 2", the command

MASK -1"1
activates all PEs except PE(Q),.

Logical operations can be applied to two PE address masks to
specify another set of PEs. The logical OR of two masks forms the union
of the two sets of PEs specified by the masks. The logical AND of two
masks forms the intersection of the two sets of PEs. For example, the

command

e i

S —

mask X"~ 101 or tx"2011

activates all PEs with even addresses and all PEs whose addresses end in
m.

Other masking schemes may be used. The general address masks of
the 1Illiac IV computer use a bit vector of Length N MBAR68]. PE(3i) is
active if and only if the ith bit of the vector 1is one. Data
conditional masks reflect "if-then-else" statements T[SM78]. When a
conditional statement i; encountered in a program, each PE executes the
statement for different data, and so the outcome may be different from
one PE to the next. Consequently, each PE sets an internal flag so that
it will be active for either the '"then'" or the "else'" but not both. So,
each PE is conditionally active based on the results of a comparison.

In describing the simulation algorithms of Chapter VIII, an Algol-
like Llanguage will be used. It includes statements that indicate which
PEs are to be active during execution of an algorithm. '"for all PEs"
means that all N PEs are to execute the code which follows. "if A then
B" statements first cause A to be evaluated. Only PEs for which A is
true are active for the execution of B; all others are inactive. "if A
then B else C" statements cause A to be evaluated, disable PEs for which

A is false, execute B, disable PEs where A is true and enable PEs for

which A is false, and then execute C fSM78].

B e e

5 s S e

e i ol A S b st i it e Ay e il B

28

III. LITERATURE REVIEW

The traditional N X N crossbar switch is too expensive for use in a
Large SIMD computer. Other networks have been proposed that can produce
all permutations of PE addresses in one pass through the network.

One such network is the rearrangeable switching network [3E65],
which uses O Log2 N) gates, but requires O(N log2 N) time to set up
the network COPT71]. Feierbach and Stevenson [FS77] have investigated
this network for use in an SIMD computer with 1024 PEs. Algorithms are
presented which implement a k-shift (PE(j) sends data to PE(k+j)), the
perfect shuffle, and broadcasting (PE(j) sends data to all other PEs).
Figure III.1 shows this network built using two function interchange
boxes for N = 8.

Batcher's sorting network U[BA68, KN73] could be used as an
interconnection network. It requires O (Log2 N)z) gates, and
requires 0((1092 N)Z) time to pass data through the network. This
network is shown for N = 8 in Figure III.2 [SIE78b]l. The building block
for this network compares its two inputs and orders them accordingly at
the outputs.

Both recirculating and multistage Shuffle-Exchange networks have

been examined in the literature.

E
|
E
g

i Ak A

TR

T T W T

"

Liah b D Sabal S

ol

TR

e B S R stk 0

=l

n

)

~
i i

3 5 5 3 3
4 ! 4 L
5] 5\ 6 5
6 \r—1 g 6
7 7 7 7 7

Figure III.1: The programmable switching network [FS77) is a Benes

rearrangeable switching network, shown here for N = 8,

i o gl

i b et . L B Wi

el s

30
— — X LF—®min(X_,X,)
e (Y 0"l
- A r’ =
— '.XL N‘——-bﬂllx(xo.x‘)
(a)
— . >1x, Hj— max (XX,)
D -
— > - x| Lf— mln(xo,x‘)
(b)
(a) Ascending comparator.
(b) Descending comparator.
I
0 , |
s o A A A A A
e o U |
2
3 D A A A A A
SR Mo TR 5
4 | 2.2
D D D A A A
gt |
A " D o b A A A
e ;
Four 2" - l Two 22 - ELEMENT BITONIC I One 23 - ELEMENT BITONIC SEQUENCE SORTER
BITONIC
SEQUENCE | !
SORTERS

Figure III.2: A bitonic sorter for an arbitrary sequence of elements

[SIE78b].

R e e

Wy R, TP R ATy TR TR T e P IR T PR T,
— el TR

Stone [ST71] has published algorithms which show how the perfect
shuffle can be used. Algorithms <for polynomial evaluation, sorting
using Batcher's bitonic sorting algorithm, calculating the FFT wusing
Pease's algorithm, and matrix transposition are presented.

Lawrie's omega network TLAW73, LAW75] is an expanded multistage
Shuffle-Exchange network. The omega network is an n stage network, where
each stage is a Shuffle followed by a four function interchange box as
shown in Figure III.3. A control procedure for the omega network was
presented in [LAW75) where destination tags for each datum determine its
path through the network.

Wen TWEN76] also has presented results for the omega network.
Various types of control methods are investigated such as passing
destination tags and using read only memory to store contrcl
information. Also presented are methods of broadcasting one datum to Zk
other PEs and partitioning the omega network into groups of 2" PEs out
of 2" PE's. Parallel algorithms for Linear recurrence relations and
matrix multiplications are presented and analyzed.

Lang [LAN76] has studied the Shuffle-Exchange network. He has
presented a modification of a recirculating network which, by adding
queues at the input to the network, can realize any permutation in at
worst O(=/N) time. A simplified Shuffle-Exchange network has been
presented CLAST76]. This network needs Lless Llogic to control the
network than the omega network. While it cannot perform all omega
network permutations, it can form many useful ones. A method of
partitioning this network has been given which assumes that all

partitions perform the same interconnection function.

e o0 0o 0 0 0
. v 2 2 1 0
! 2 FN b 2, il
H
, R ; 5 : 6 s T
P A ” B o) p
4 1 4
u 2 1\ 14\ U
6 6/\3 3/\s 5
T - ']
(3 3 5‘ S 6W 6
y M ¥ 7 ? 7 7
STAGE' 2 i 0

Figure III.3: The omega network is a log2 N stage Shuffle-Exchange net-

work with four function interchange boxes [LAW7S].

{
4

. NS

33

Several Cube networks have been presented in the Lliterature. The
CHOPP machine [SUB77], a multiple instruction stream - multiple data
stream (MIMD) machine L[FL66] design, uses a recirculating cube network
to move packets of information among proceséors. The flip network of
the STARAN [BA76] SIMD machine is a multistage Cube network which moves
data between processors and memory or between processors and processors.
Two set of controls are provided for the flip network as shown in Figure
III.4. The flip controls are individual stage control for the network.
The shift controis are partial stage control and allow the network
perform all shifts of 2.i modulo Zj, 0 <€ 9,] < n. That is, the
permutations of PE addresses where PE(k) sends data to PE(k + 2i modulo
2j) for all k, 0 < k < N. Pease [PEA77] has also worked with a
multistage Cube network, the indirect binary n-cube (Figure III.5), for
use in systems with large numbers of processors. He has shown how such
a network could be used for spectral analysis algorithms and matrix
operations. In [SIS78], a generalized cube network (Figure III.6), a
multistage Cube network, was introduced and used as a basis for
comparing multistage Cube networks.

Feng's data manipulator [FE74] is based on the PM2I functions. The
data manipulator network (Figure III.?) consists of n stages of N cells,
where for 0 < j <N, and 0 < i < n, there are three sets of
interconnections from input cell j at stage i: PM2+i’ PH2_i, and
straight to output cell j. Each stage of the network is controlled by a
pair of signals selected from a group of six. U1 (PMZ_i), D4 (PMZ*i),

and H, (straight) control cells whose jth bit of the address is 0, and

1

0

STAGE

(a)

2A

=

o™
by~ —~ =

1A

ha Ap
Y11y AT
Al 1l
[AHA

18

0A

A A
iyt s
TR UL

yy vy vy vy

o [l del]

- Z 0o DO W+

1
(v)

0

STAGE

The flip

(a)

The STARAN flip network for N = 8 [BA76].

Figure III.4

(b) The shift control is partial

individual stage control.

is

control

stage control.

R e

e ! "

- & O

- € "R -

- & v

STAGE 0

Figure III.5: The indirect binary n-cube is a log2 N stage cube net-

work, shown here for N =8, The first stage forms Cubeo, the second

Cube1, and the last Cube2 CPEA771.

4
3
I

'3

36

! 0 0 0 0 0 0
e s e L e————
1 b 4 2 2 1 1
| 2 1 1 \ /1 1 >< 2 2 0
' 3) 5 3 | 3 3 3 U
" T
S 6 6 3 6 5 P e
v s I
TRl 3 5 5 3 " T
- ! 7 7 7 s
i ; STAGE 2 1 s

Figure 1II.6: The generalized cube network, shown here for N =8, is a
Log2 N stage cube network. The first stage, stage 2, forms Cubez, the

next forms CUbe1, and the Last forms Cubeo.

o § <A SPECE

0

E | u

F {

3 N T JI
P P

1 v U

' T T
STAGE

Figure III.7: The data manipulator network [FE?41, shown for N = 8, is

a Log, N PM2I network.
?he dashed lines represent the U control line interconnections.
The dotted Lines represent the H control Lline interconnections.
The solid Lines represent the D control line interconnegﬁions.
For stage i, U,, D,, and H, control those cells, whose i bit is O,
and U1, DZ’ an H2 control those cells whose i~ bit is 1.

e

38

th

U (PMZ_i), D2 (PH2+i), and H2 (straight) control those cells whose i

2
bit is 1.

The augmented data manipulator [SIS78, SIE79al is a data
manipulator with individual cell control. That is, each cell receives
none, one, or two of the signals H, U, and D. Since each cell in
controlled independently, the set of permutations that the network can
perform is a superset of those of the generalized cube network [SIS78].

Siegel has presented comparisons of the Shuffle-Exchange, Cube,
PM2I, and Illiac networks [SIE77bl. Lower and upper time bounds have
been presented for each network to simulate any other [SIE77a, SIE79b].
The effects of PE address masks have been related to the number of
permutations on the set of PE addresses that a network can perform
[SIE77al. Algorithms have been presented which show how a network can
simulate an arbitrary interconnection with the aid of Batcher's bitonic
sorting algorithm by sorting destination tags associated with the data
presented to the network [SIE78b]). In [SIS78, SIE79al, it was shown
that some multistage networks have the same topologies and so can
perform the same permutations. This fact will be used extensively in

proving theorems in Chapters V and VIII.

IV. NETWORK STRUCTURES

IV.1. Introduction

Three types of interconnection functions, the Cube, the Shuffle-

Exchange, and the Plus=-Minus 21, are implemented as recirculating

(single stage) networks and as multistage combinational Llogic networks
in section 2. Comparisons are made on hardware complexity and delay to
transfer data. The Shuffle-No Shuffle-Exchange network is introduced in
section 3. This network has all the capabilities of the multistage
Shuffle-Exchange network, but in addition, can perform 1 to n-1 shuffles
in one pass through the network. Section & considers breaking a data
word into segments before passing the datum through the network. Then,
the width of the network is smaller than when the wider data word is
passed all at once. So, more than one pass is made through the network
to pass the data. Alternatively, for a multistage network, the network
can be pipelined and the S segments passed in parallel. The cost and

delay to pass S segments are compared for these cases.

40

IV.2. Hardware Implementations

In order to compare these networks, typical circuits for each are
presented. Comparisons of gate count and circuit delay are made for
multistage and recirculating Shuffle-Exchange, Cube, and PM2I networks.
For simplicity, the following analysis is made on networks that are one
bit wide. The costs of DTRin, DTRout, and any hardware needed to
interface with the network are not included in the network cost
estimates. The delay times presented are intended as approximations and
are useful for comparisons. In practice, the speed of the network will
also depend on the speed at which control signals can be generated and
on the technology of the circuit design. Table IV.1 summarizes the
notation that will be used in the discussion.

Three multistage Cube networks which have been presented in the
literature are the STARAN flip network [BA761, the indirect binary n-
cube [PEA77], and the generalized cube [SIS781. In ([SIS78], it was
shown that these three networks and an n-stage Shuffle-Exchange network
are all topologically equivalent.

With this in mind, a circuit for an 8-item generalized cube network
is presented in Figure III.6. At the input and output to each stage,
each Line has an n bit binary address, P, 0 <P < N. Stage i compares
input Llines L and L', whose addresses differ in only bit i, and
conditionally exchanges data between L and L'. In this way, a Cubei
function 1is implemented. The interchange box (Figure IV.1), on which
this Cube network can be based, conditionally interchanges the data at
its inputs, thus performing a conditional exchange. So, stage i of the

network forms Cubei, 0<i<n. The circuit uses n*N/2 interchange

41

Table IV.1: Definitions and abbreviations

4

i NOTATION MEANING

?ﬁ dr delay of a register

4 cr cost of a register
dm delay of a multiplexer
cm cost of a multiplexer

dms delay of the lLogic for one
stage of a multistage network
cms cost of the Logic for one
stage of a multistage network
drn delay of the lLogic for a
recirculating network
| drs delay of the logic for a
recirculating Shuffle-Exchange
network
cbr cost of the logic (buffers)
for a recirculating network
Cr cost of a recirculating network
Cp cost of a pipelined
multistage network

Cm cost of a combinational logic
multistage network

Tr time delay of a recirculating
network

Tm time delay of a combinational

logic multistage network

Tp time delay of an n-stage pipel ined
multistage network

Tk time delay of a k-stage pipelined
multistage network

W width of a data word to be
transmitted through the network

S number of segments into which a
data word is divided

Q the number of passes made through

a recirculating network to

complete a desired transfer
the number of PEs in the system
n log2 N

—

ﬂ Exchange
f
3
i
§ Do,
in

~tE

and D1out = D1in'

Doin.

S

Figure IV.1: An interchange box.

" " o= =
If "Exchange 0, then DOout DO.

n

" " o= = =
If "Exchange" = 1, then ooout °1in and D1out

B S S vl ot

s

43

b&xes, or 7n*N/2 gates, and has a delay of dms*n + 2*dr, where dms is
the delay through the interchange box, and 2*dr represents the delay
through DTRin and DTRout.

As a design example, suppose it is desired to build a multistage
generalized cube network for N = 1024. This 10 stage network could be
designed using off-the-shelf components. An 1inverting interchange box
made from AND-OR-INVERT gates (SN7451) can be used in place of the NAND
gates in Figure IV.1. This circuit (Figure 1IV.2) performs the same
function as the interchange box, but the outputs are complemented.
Since interchange boxes are cascaded to form a multistage network, if n
is even, these inverting outputs cancel. For example, after stage n-1,
the data are complemented, but after stage n-2, the data are true. A
design for a 10 stage 1 bit wide generalized cube network would require
512#10 = 5120 dual 2-wide 2-input AND-OR-INVERT chips (SN7451) and
5120/6 = 854 hex inverter chips (SN7404). This is a total of 5974
integrated circuit packages, or less that 6 integrated circuit packages
per bit per PE.

Alternatively, an interchange box can be constructed from two
2-Line-to=-1-line multiplexers. Let the output of multiplexer zero be

Doout’ and let the output of multiplexer one be D1o If exchange = 0,

ut”
then multiplexer zero selects l>01.n and multiplexer one selects D1in' If
exchange = 1, then multiplexer zero selects D1in and multiplexer one
selects DO, . One integrated circuit (an SN74157) may contain four such

multiplexers which all respond to the same control signals. So, a 2-bit

wide generalized cube network for N = 1024 can be built using 512%10 =

5120 quadruple 2-lLine-to-1-lLine multiplexers (SN74157), or less than 3

g 44

Exchange

DO

s T EADBAHEL UE Cif is Rsb g TN REL 5
—

I
I
l
SN74S1 |
l
l

| DI, |
| in \ |

|

| |

RS G T

!
4
2
2
|
;
|

Figure IV.2: An inverting interchange box using AND-OR-INVERT logic.

|
i
:

45

integrated circuit packages per bit per PE.

A multistage PM2I network can be built from the modules of Figure
IV.3 (FE74], Referring to the multistage network for N=8 in Figure
I11.7, a Llogic module of stage 2 has the construction of the Lleft-hand
side of the module of Figure IV.3, while the receiving right-hand side
of the module lies in stage 1 of Figure 1III.7, The number of gates
needed for an n stage PM2I network is 4*N*n, and the delay is dms*n+2dr.

A 10 stage 1 bit wide PM2I network could be designed from discrete
components using 3*1024%x10/4 = 7680 2-input NAND packages (SN7400) and
11024%10/3| = 3414 3-input NAND packages (SN7410). This is 11,094
integrated circuit packages, or less than 11 chips per bit per PE.

Figure IV.4 shows a circuit for a recirculating Shuffle-Exchange
network. At any pass through the network, either a shuffle or an
exchange may take place. Referring to Figure 1I1I.9, to accomplish
multiple passes through the network, a recirculating network allows a
multiplexer to select data from DTRin or DTRout for input to the
network. Q passes through the network may be required to complete a
desired transfer of data between PEs. This circuit uses 3N gates and
has a delay of dr + Q(dr + dm + drs).

The recirculating Cube network can be built using tri-state buffers
with outputs that can be OR-TIED together, as shown in Figure IV.5. A
recirculating PM2I network could be constructed similarly (Figure IV.6).
The Cube network uses N*n buffers while the PM2I network uses 2#N#(n-1)
buffers, since PM2+(n-1) = PMZ—(n-1)' Both have delay dr + @ (dr + dm
+ drn). For small n, the Cube network could be built using 2 levels of

NAND gates, where the input to the network is composed of 2-input NANDs

e o

46

To cell

From
stage :
i+
gt :
s s
To cell
k + 2

\V

From cell
k - 2!

From cell
k + 2!

To stage

Figure IV.3: A PM2I module for row k CFE741].

47
3
g

i

From PE(Shuffle ! (i))

|

i Shuffle —— ‘ ? .
- %
.- Exchange — ,
i £ i
; |
| 2397

': From PE(Exchange(i))

| Figure IV.4: A circuit for a recirculating Shuffle-Exchange network for

PECI), 0 < i <N.

R e

L a7 3Rl S

ﬁi Cubez ;5
] —__&_ To PE(Cube,(i)) i
{ i
Cubel it From PE(Cubez(!)) 3
To ——— ! :
PE(Cube‘(i)) |
Cube From
W i PE (Cubeq (i) To
B ey \l 5— Cube. (i 1 PE(i)
. ~_Erom PE(i) PE(Cube, (i)) o
PE(Cube, (1))

CONTROL

INPUT —— OUTPUT

v

TRI-STATE BUFFER

Figure IV.5: A circuit for a recirculating Cube network for PE(§),

0<i<s8.

e Ve R s Mo 2 0 R 3

i et
sy e e e e

ol et

PMZ*O

PM2

PMZ.H

PH2_,

Data from
PE(i)

PMZ‘.,2

Figure 1IV.6:

To From

PEist PEia) —
To From

g B s
To From

PE 42 PELL,

To From _]
PEi-2 PE;j_)

To From

PE (i)

A recirculating PM2I network for PE(i), 0 < i < 8.

.

SRR U

50

and the receiving side is composed of n-input NANDS. For lLarge n, due
to fan-in and 1integrated circuit package count Limitations, the tri-
state buffer design is preferable.

When selecting an interconnection network, the time to complete a
data transfer 1is an important consideration. For a recirculating
network, this time is proportional to the number of passes made through
the network, @, 0 <Q < n. In the case of the multistage network, for
any data transfer, all n stages must be traversed, so as the number of
PEs grows, the time to pass data increases.

For some value of @, a multistage network and a recirculating

network will have the same delay time. If dr = 6 ns, dm = 5 ns, drn =

4.5 ns, and dms = 6 ns, then the two networks will require the same

.39 (1 + n). This indicates that the choice between a

delay time if Q
recirculating network and a multistage network should depend on the
number of interconnection functions used on the average to complete a
data transfer, and thus depend on the types of problems that a system is
designed to perform. For example, if skewed storage [ST7?5] is used,
there will be uniform shifts which may require all n Cube functions of a
multistage network. However, sorting using the Cube functions will need
only one interconnection function at a time [SIE73b]. Figure IV.7
jllustrates this effect for an n-stage generalized cube and a
recirculating Cube network.

In Chapter II, three types of controls for multistage networks were
defined: jndividual stage control, individual box control, and partial

stage control. The multistage network implementations discussed here

can be used with any of these control schemes. The recirculating

RECIRCULATING
160.0 - |

» 8 120.0 +

.; 2

| 5

| ¥

b ~ 80.0-

: " MULTISTAGE N=1024

f %.0- 7 MULTISTAGE N=6Y4

| fuusshteti MULTISTAGE N=8

b 0.0 T T T T i

: 0 %8 er céF FuncTitns used™ O

Figure IV.7: Break even points for a multistage Cube network versus a

recirculating Cube network.

52

control

networks designed here can be used with either the conventional

L e A T v Fi v i s

or the independent function control defined in Chapter II.

L SN M AV 5 24 s il SRS A S e i 1 DTN AT M. I35 S e st N s

AR N i

i o A AR

T e

T ———

53

IV.3. The Shuffle-No Shuffle-Exchange Network

For the Cube and PM2I networks, any data transfer that can be
accomplished 1in one pass through a recirculating network can be done in
one pass through a multistage network. This is not true for the
multistage Shuffle-Exchange network. Recall from Chapter II that the
shuffle permutation maps network input P = pn_1..p1po to network output

Shuffle(P) = pn_z...p1popn_1.
From Theorem 2 of CLAW?5]1, it can be shown that the multistage Shuffle-
Exchange network cannot perform the shuffle permutation in a single pass
through the network. Theorem 2 states that for all mappings of source PE
Si to destination PE Di that define a permutation of input PEs to output

PEs, a logzN stage Shuffle-Exchange network can produce this mapping if

and only if

(Si modulo Zk # Sj modulo 2k

OR IB%I modulo 2"k o |2%| modulo 2n-1)'
2 2
for all k, 1 <k <n, and for all i, j, 0 < i, j <N, where |A| is the
greatest integer that is less than or equal to A. Consider two source
destination pairs that occur in specifying the shuffle permutation:
(S.'I D.') -2 (Dpn_ZD--p1p0’ pn_zc--p1p00)

(8j, Pi) = (P _5eeP4Pgs P _3e+P4Pp1).

Then, $i # Sj, but Si modulo 2 = $j modulo 2 and Di/2 modulo 2"~ = pj/2

T St

e R

P TR

54

modulo 2n-1. For k = 1, the two source destination pairs do not satisfy
the criteria of Theorem 2 of CLAW75], and so the multistage Shuffle-
Exchange network cannot pass the shuffle permutation.

To rectify this, a Shuffle-No Shuffle-Exchange (SNSE) network is

introduced here. At each stage of this multistage network (Figure
1V.8), the options are staight (do nothing), Shuffle, Exchange, or
Shuffle-Exchange. Data passes through stage n-1, ..., 1, and last passes
through stage 0. Alternatively, the cell i of the network can be
designed as a multiplexer which conditionally outputs the data input to
cell i, data from Shuffle-1(i), data from Exchange(i), or data from
Shuffle-1(Exchange(i)). Assume that at any stage, a shuffle affects all
PEs, and that any exchange signal affects both PE(3) and
PE(Exchange(i)). Unlike Lawrie's omega network, no broadcast functions
will be allowed. This network can produce all the permutations of the
recirculating Shuffle-Exchange network. Thus, it has the advantage over
the multistage Shuffle-Exchange network of being able to perform one to
n-1 shuffles in one pass through the network.

Let P={ (i, Di) | O < i <N Y be a permutation mapping of source
PE address Si to destination PE address Di, where the binary
representation of Si is Pn=1-++P1Pg and that of Di is dn_1...d1d0. A
network passes a permutation P if and only if P conforms to the
acceptable form for that network, and no conflicts result in the passage

through the network CLAW75]. Z @ P means the network Z passes a

permutation P.

PRI

RRUSEREE..... - o - e g PGS, A s D S i = o i TS SR ol R B AN e S R s

e s

55

Shuffle-Exchange
» No Shuffle
2 Exchange
k. Shuffle
B From -1
)—Shufﬂe(l) shuffle " (i)
f
S
_; L E change(i) P
; From 7__j out
Exchange(i) *>""‘
/]
in 4
From —
_4 Shuffle (Exchange(l))
To
Exchange (Shuffle(i))

Figure 1IV.8: A Shuffle-No Shuffle-Exchange circuit for row |

’

0<i<N

et < O

P

i

56

Theorem 1IV.1: An n-stage SNSE network can form the following

permutations. Consider two pairs of acceptable source-destination tags
pairs, (Si, Di) and (Sj, Dj). Then for all i and j, 0 < i, j < N, the
acceptable source destination pairs have the following form. For all t

such that 0 < t < n,

1><A)§i modulo 2" (1) o DL L iulo 2™ (D)
St

;
@A (si#si=> ¢ A CI5H moduto 2" # 131) moduto 2" om

b=0

Di k+ 1
‘;_-k-l modulo 2

1 4 1-2 moduto 2*Hyy,
Stk

Or, the pairs are of the form,

2)si # sj => (si modulo 2% # sj mod 2¢

oR |Zt| modulo 2 12| moduto 2
2 2

for 1 < k < n, where

L

N aan
h=0

is the logical AND of all A(k) for 0 < k < t.
Proof: An n-stage SNSE network, designated Z, will be analyzed by parts.
Z. will refer to a network constructed with only an exchange function,

0
f.0s, Z0 = E. Z1 prefixes an Exchange-Shuffle stage to ZO' i.€e, 21 =

(ES)Z0 = ESE. Z2 prefixes an Exchange-Shuffle to 21, i.e., z2 = (ES)Z.'

et

e A i) U R A S 0

e ursibRin it o

57
= (ES)(ES)Zy = (ES)(ES)E. For D <t <n, Z = (EHZ,_, = ES)'E. The
Last prefix creates Zn’ an n stage Shuffle-Exchange network, by J
prefixing a shuffle stage to Z _,, i.e., Z = sEH™ Ve = (se)". The J
permutations that 2Z can pass are the union of the permutations that

ZO' 21, e s s o and Zn can pass.

Note that certain cases are not explicitly considered here. For
example, a shuffle followed by k No Shuffles is equivalent to k No
Shuffles followed by a shuffle. Also, a shuffle followed by two

exchanges has the same effect as just a shuffle. The first cases are

not considered ir this argument. The second equivalent ones are.
Without Lloss of generality, it is assumed that if stage i is a Shuffle,
then so is stage j, for all j, i > j > 0.
Z0 accepts the permutations
Pre1**P1Pg > Pp_q=+-P4Pp-
A conflict, CO, between two different sources Si and Sj results if and
only if Di = Dj, that is

€0 = (]Si/2| = |Sj/2]|) AND (Di modulo 2 = Dj modulo 2).

2y 4 P <=> (|si/2]| = [pi/2]) AND

(Si # §j => NOT(CO)), 0 < i,j <N.
Recall that Zt = (ES)tE. For 0 < t < n, the transition of data is

pn-1.¢-po e pn_1¢-.p1dt

d.d

= Ppoge e Pq9dea

== Pp-3e=+Pq9deq9e-2

a—y pn_1 _t- L .p1dtdt_1 .a -do.

58

e TR b il it .

The acceptable permutations are, thus,

n=-0(t+1) n=-(t+1)

I$i/2| modulo 2 = 10i/2%*1) modute 2

For Si # Sj, a conflict results after k shuffles and k+1 possible

exchanges, 0 < k < t, if and only if

ctek) = (|sisz2| moduto 2" %71 = [s§/2] moduto 27K

{ AN ¢ 10i/27%| moduto 2¥*1 = 10§72t 7% moduto 25*">. :

Thus, the expression for a conflict, Ct, is ?

t
ct= V (Ct(k)).
k=0

Therefore,

T

n=(t+1) n=(t+1)

(|si/2| modulo 2 = 10§/2"*"| modulo 2)

il) (A < e i

AND (Si # Sj => NOT(Ct)), 0 < i,j <N.

The combination of the permutations which Z0 through Zn_1 pass 1is

Lok

equivalent to the above statements 1) (A) and (B) in the statement of

b Theorem IV.1.
Zn is a shuffle stage concatenated with Zn_1 and is an n-stage
Shuffle-Exchange network. From CLAW?75], it is seen that Zn accepts a

permutation P if and only if

T ———

si #58j =

NOTC Si moduto 2X = §j moduto 2X

3 2

R - AND |Di/2k| modulo Zn-k = |Dj12k| modulo Zn-k),
1<k<n.

The expression is equivalent to statement 2) in the statement above of

Theorem IV.1.

b, AN RSt SAL 2

it i AU RS SN A AR S e

59

The n-stage network Z passes all permutations that are passed by

ZO' 21, e = e Zn. [:'

The SNSE network can form all the permutations of the recirculating
Shuffle-Exchange. If x passes through the recirculating network are
needed, then (x/n| passes through the SNSE network accomplish the same
data transfer. This speed-up has been accomplished at the cost of a few
extra gates per PE, S5*N*n for the SNSE network versus 7/2 Nxn for the
multistage Shuffl=2-Exchange, and for more control signals, n*N/2 for the
multistage Shuffle-Exchange and (1(Shuffle) + N/Z(Exéhange) +

N/2(Shuffle-Exchange)) * n signals for the SNSE network.

Lih iz i

I e I TSR TRy Ty ey
s Bl A asn s

60

1v.4. Combinational Logic Multistage Networks

and Pipelined Multistage Networks

In section 2, networks were analyzed as if they were one bit wide.
Data words may be sent through the network bit serially, but other
methods may be more efficient.

Let the width of a data word be W bits. A network may be designed
as W planes, where each plane is a one bit wide network [LAW75]. As an
example, consider the 10-stage generalized cube network for N = 1024
that was described in section 2. The number of packages required for W
= 32 is 5974 * 32 = 191,168 integrated circuit packages, or about 187
per PE.

The amount of hardware could be reduced by a compromise. The data
word could be divided into W/8 = S segments of data, the network
constructed as a B bit wide network, and then the data word passed in §
passes through the network. In this manner, if the delay of the network
is D, then the delay to pass the entire data word through the network is
S*D. If the number of gates in a W wide network is G, the number of
gates in the reduced network is G*B/W = G/S.

In order to show how this division of the network might be done,
three sample hardware designs are presented. Design 1 moves data into
and retrieves data from the network B bits at a time under software
control. This method is slow, but requires no extra hardware for
control. Design 2 multiplexes the S segments into and out of the
network. The W bit data word is Lloaded into DTRin. An S-to-1
multiplexer supplies the network with each segment of data at the proper

time. An S-to-1 demultiplexer retrieves the segments from the network

rT————r———

R T—————————~

and arranges them in DTRout. Since the maximum delay of the network is
much Less than one instruction cycle, this design is faster than design
1. But, it requires more hardware for the W bit wide DTRin and DTRout
registers and the B bit wide multiplexer and demultiplexer. Design 3
constructs DTRin and DTRout from B S-bit shift registers. DTRin is made
from parallel-in-serial-out registers, and DTRout is made from serial-
in-paral lel-out registers. Let dw_1...d1d0 be a data word. The first

register of DTRin stores bits ds_1...d1d0. The second register stores

d d

bits d w=s+1%-

28-1"'ds+1ds’ and the last register stores bits d

Each clock period, the lLeast significant bit of each of the B shift

W-1"""
s°
registers of DTRin is presented to the network, the DTRin registers are

shifted, and the next B bits are ready to be presented. During the

clock period, these B bits propagate through the combinational logic of
the network. Each clock period, at the output of the network, each of
the B shift registers of DTRout receive one bit from the network. After
S clock periods, the S bits 1in each of the B shift registers are
presented as a W bit word to the PE. DTRin and DTRout will be treated as
W-bit registers by the balance of the system. This design is faster
than design 1 and requires less hardware than design 2.

For an extra cost, overlap parallelism may be added to a multistage
network to reduce the total time to move S segments of data. Assume that
the network is B bits wide, that DTRin and DTRout are W bits wide, and

2t sts for interfacing between the DTRs and the network are small

. { o the _ost of the network. Let the network be an n stage

» registers of delay dr between each stage, each stage

figure 1V.9 iltustrates this arrangement.

A "‘ l' e ——— e — L e e S ————— T ‘:i‘! . TR
62

g

| :
‘ ;
.‘! d

d° - 5 - %h
: 1 W-1-B 0 — |

.

°
o‘. ®

O-1 Op- 1

i PE,\ | = P

| 0

PE

| ==l

4 PE| Y Y °

' ~ .

{) []

i Y PE

| PRt N-1

4 stage esestage o o e stage stage

L n-1 s | 0 |
!

b

,“ Figure IV.9: A model for a pipelined multistage network of width B for

; N PEs and data word Dy=1°°+210g"

1

E |

:

g LA
g e e

RS Wl e OV

63

The delay for the combinational logic multistage network is the
time to load DTRin, plus the time to pass through the network, plus the
time to load DTRout. The cost, n*cms*B, considers only the network and
not DTRin and DTRout. The delay of the pipelined pgggork is dr + n *
(dms + dr) to get the first segment from the ne;;;;k, and the remaining
segments arrive at DTRout in the next S-1 time delays. The cost of the
pipelined network is that of the multistage network plus crx(n-1)*B for
the N-bit registers that are placed between each of the n stages.

The S segments of data may be transferred using a pipelined network
in time

dr + n(dr + dms) + (S - 1)(dr + dms)

Tp

dr + (drtdms)(n + S - 1).
The unpipelined network transfers the same data in time
Tm = S(dms * n + 2 * dr).
If the Last segment is lLoaded into DTRout as the next segment is Loaded
into DTRin, then
Tm = dr + S{dms*n +dr).
Either formula can be used for the analysis, and the difference in the
analysis is negligible.
Figures IV.10, IV.11, and IV.12 plot Tp vs Tm for various values of
M and S, for dr = 9 ns and dms = 10 ns. These time approximations are
based on Schottky logic according to [TI7?61. 1In all three Figures, for
S >2, the pipelined multistage network passes data in less time than
the combinational Logic multistage network. As S grows, this time

difference becomes more pronounced.

(TN T TR s R

ws)

=
|
|4

13
|
:

A i T e e
£

b g sl e o TN

SR E g

i e i S

e

600.0 —

500.0

400.0

TIME (NS)

300.0 —

200.0 —

100.0 —

64

COMBINAT IONAL :

N=16

PIPELINE: N=16

0.0
0.000

2.000 4.000
NO. OF SEGMENTS

T 1
6.000 8.000

S OF DATAR

Figure IV.10: Tp vs. Tn for N = 16.

400.0 —

TIME (NS)

300.0

* 200.0

100.0

N=6

PIPELINE: N=B6Y-

COMBIN
Y

/—

0.0
0.000

I I

I
6.000

2.000 4.000
NO. OF SEGMENTS S OF DATA

Figure IV.11: Tp vs Tm

for N = 64.

]
8.000

AT ICNARL:

TIME (NS)

COMBINAT IONAL :
N=1024

0.0
0.000

2.500 Y
NG. OF SEGME

Figure 1IV.%2:

I

s)
.009 6.000 8.000
NTS & CF DRTA

Tp vs Tm for N = 1024.

N=1024

67

IV.5. Equal Cost Combinational Logic and

Pipelined Multistage Networks

Suppose that a combinational Llogic multistage network and a
pipelined multistage network have equal cost. Since the pipelined
network uses more hardware than the combinational Llogic multistage
network, the width of the pipelined network is less than the width of
the combinational Llogic multistage network of equal cost. The
relationship between Sm, the number of data segments for the multistage

network, and Sp, the number of data segments for the pipelined network,

is
{n * cms + (n-1) * cr)g— =n % cms * g—)
p m
or
Sp = Sm * (n*cms + (n=1) * cr)/(n * cms).

Suppose cms = cr, that is, the cost of the logic for one stage of a

multistage n2twork 1is about that of the cost of the register at the
output of that stage. If the number of gates for a simple flip-flop and
the two levels of NAND gates that can comprise one stage of the network
(or a multiplexer) are compared, then cms = cr is a fair estimate of
relative cost. If the package count is considered, since D-type flip
flops are available four (SN74175) or six (SN74174) to a package,
cms > cr may be true. For this analysis, cms = cr, and it is understood

that this is a worst case estimate for pipelined network costs.

bl kil i S - miin t st e i i b g N ol

b et

If cms = cr, then
(n* C + (n-1) * C)/Sp =n%* C/Sm, or
(n + (n=1)) * S, =n*lw» Sp, or
Sp = (2*n - 1) Sm / n.

; Table IV.2 Llists Sp, Sm, Tp, and Tm for various values of N for
combinational and pipelined networks of equal cost, assuming dms = 10 ns
and dr = 9 ns. Figures IV.13, IV.14, and 1IV.15 illustrate the data
transfer delay time variations for two equal cost networks. In order to
move W bits through a network, for a small number of segments of data, j
the unpipelined network completes the data transfer in less time than
the pipelined multistage network. However, as the number of segments
grows, the pipelined multistage network requires less time to complete

the transfer than the same cost combinational logic multistage network.

Table IV.2: N, S

S , Tm, and Tp for equal cost networks.

N Sm Tm
16 1 58 2 104
16 4 205 7 199
16 & 401 14 332
16 16 793 28 598
128 1 88 2 161
128 4 325 8 275
128 8 641 15 408
128 16 1273 30 693
1024 1 118 2 218
1024 4 445 8 332
1024 3 881 16 484
1024 16 1753 31 769

@ 2 Smin i b - i, v 5 e - —, .
| 70 J
i
|
3 800 Jr
:
2 8 700 ——
{ Q
3 1]
L (=]
;] :
s
3 ~ 600 4
- &
1 x
" o
4 E 500 4 =
i [
i :400 -
P
h - =
i 3300 4
i s
) -
! >
| 5
£ oy
2200 4
| &
100 -+ 3
Tm
- 1 I\ I | | & |
; : l ¥ l l
,‘ i 3 1 2 3 b
| (Sp=16) (S,=4) (Sp=1)
i COST = n * cms * W FOR TWO EQUAL COST
; 5

'm
NETWORKS (in units of cms*W)

Figure IV.13: Cost vs delay for equal cost pipelined and combinational

logic networks for N = 16.

7

1400 4+

v

12007

1000

L4

800~

600ﬁ

T
//

APPROXIMATE DELAY TIME OF Tm OR Tp (nanoseconds)

Loo<
200T
1 I L L A | \ 1)
g B v [T T T T -+ T s——
0 | 1 2 3 4 5 13) 5
(5. 216} (S s4) (5,1

COST = n ®* cms * W_ FOR TWO EQUAL COST

NETWORKS in units of cms*Ww

Figure IV.14: Cost vs delay for equal cost pipelined and combinational

logic networks for N = 128.

N

TR T .

i NN oSS

T -

o

S

-

U Y o1 1 A Bty Y 1. TR

72
91800 +
)
I3)
@
©w
Q
2
1500 4+
&
o
o
&
leOO"
(=]
m
=
[l
(3
g 900#
=
a
m
(3]
<
5
= 600+
o
@
[
Ay
<
3004
" . ki 4 1 1 L i i s } 1
~ ol T T v T T 1 1
0 | 1 W5 AL RS S SR A
(s =16) (S =b) (Sy*
Suol = n * cms * W rUR lwv EqUal COST

S

NETWORKS in units of cms*W

Figure IV.15: Cost vs delay for equal cost pipelined and combinational

Logic networks for N = 1024.

l!.é, Average Data Transfer Times

Consider the average time to pass one segment of data. Let both a
combinational Llogic multistage network and a pipelined multistage
network have the same width. The combinational logic multistage network
passes, on the average, one segment of data in (dms*n+2dr) time units.

The pipelined network uses an average of

dr+(n+S-1) (dms+dr)
S

time units/segment. As S increases, this average time decreases. These

two average times are equal for

dms*n + 2 dr = dr + (n +S ; 1) (dms + dr)

g=dr* (n+S - 1)(dms + dr)
(dms*n + 2 dr)

s - s dms + dr _ dr + (n - 1)(dms + dr)
dms*n + 2 dr dms*n + 2 dr

s = dr+(n-1) (dms+dr)
sx(n- r

For example, if dms=dr and n=10, then

s = dr+(10-1) (2dms) _ 19
(dms*(10-141)) b

So, for S > 2, the average delay per segment is less for the pipelined
network than for the combinational logic multistage network, although

the total time to pass one data item may be greater, due to the time to

fill and empty the pipe. This suggests that a pipelined multistage

i

AR S i & S R 3

74

network is most applicable where many segments of data are passed, such

as passing blocks of data at once rather than one data word.

AN S . AN TR NN 5§ T RS i

Sl b e

e Sa el 2 AT

